
N90-25567

FUNCTIONAL DESCRIPTION OF A COMMAND AND CONTROL LANGUAGE TUTOR

David R. Eike and Thomas L. Seamster
Carlow Associates Incorporated
8315 Lee Highway
Falrfex, Virginia 22031

Walter Truszkowskl
Code 522.3
Goddard Space Flight Center
Greenbelt, Maryland 20771

,aBSTRACT

This paper describes the status of an ongoing project to explore the application of Intelligent Tutoring System
(ITS) technology to NASA command and control languages. The primary objective of the current phase of the
project Is to develop a user interface for an ITS to assist NASA control center personnel in learning Systems
Test and Operations language (STOL). Although this ITS will be developed for Gamma Ray Observatory
operators, it will be designed with sufficient flexibility so that Its modules may serve as an ITS for other
control languages such as the User Interface Language _UIL). The focus of this phase is to develop at least one
other form of STOL representation to complement the operational STOL interface. Such an alternative
representation would be adaptively employed during the tutoring session to facilitate the learning process.
This Is a key feature of this ITS which distinguishes it from a simulator that is only capable of representing
the operational environment.

INTRODUCTION

This paper describes the status of an ongoing project to explore the application of InteLligent Tutoring System
(ITS) technology to NASA control centers. The primary objective of the current phase of the project is to
develop a user interface for an ITS to assist NASA control center personnel in learning Systems Test and
Operations language (STOL) with the aim of designing the ITS with sufficient flexibility so that its modules
may serve as an ITS for other control languages such as the User Interface Language _UIL).

The paper first addresses nine broad areas of functionality that combine to produce an ITS. This presentation
emphasizes that these functions may have different levels of implementation, from a very simple level to a
complex one requiring considerable computational resources. This approach decomposes the ITS into functions
that do not match the trad!tlonal ITS modules (see Figure 1 for the relationship between the functions and the
ITS modules). The reason for this decomposition is to take a fresh look at ITSs from the perspective of NASA
command language training needs. The nine functions are as follows:

initiating the tutoring session
Assessing the student's status
Presenting the problem
Monitoring the student's performance
Assessing the student's goal
Identify the Information to be tutored
Adapting tutor mode to student
Tutoring the student
Updating the student model

The last part of the paper presents the critical Issues affecting the current phase. These issues include which
modules will be developed first, which functions will be given the highest priority in the ITS, and the process
for deciding on whether to use an intermediate form of representation for the tutoring of the control language
and/or the objects being controlled.

INITIATING THE TUTORING SESSION

An ITS may initiate a tutoring session In response to one or more of the following events: 1) a request from the
student for Instruction; 2) a pre-defined schedule of tutoring; or, 3) detection by the ITS of a flaw in the

585

Initiate

tutoring
session

student

status

STUDENT

MODEL

Exit

i Update

student

Figure 1.

model

Functlona! Flow of a Command LangUage ITS

student's knowledge. Each of these approaches has significant implications for the design and overall functional
characteristics of the ITS.

The simplest ITS architecture employs the programming equivalent of an "on" switch to initiate a tutoring

session. In this approach, the student recognizes the need for tutoring and requests that the ITS begin tutoring.

At a more complex level, the ITS may have the capability to infer what instruction is necessary by examining
the student model.

S86

An increasingly complex ITS would include the use of a tutoring schedule which describes the timing and
sequencing of individual "lessons." The schedule is developed as pad of the ITS's curriculum module, and
modified, as necessary, to accommodate requirements of the individual student. The ITS queries the student
model to establish the student's position within the schedule, and then initiates the appropriate tutoring
session to advance the student to the next scheduled level of learning.

ASSESSING STUDENT'S STATUS

The ITS must infer the student's status within the session as well as the entire tutorial. Depending on the
modules of an ITS, this assessment may be based on the interaction of the data in the student model with that of
the curriculum module. At the start of a session, this assessment will be instrumental in determining which
problem to present. This assessment serves also to determine if the session is complete.

PRESENTING THE PROBLEM

In its simplest form, this function involves selecting the next problem from a predetermined problem sel. The
assumption here is that the ITS's primary function is to present domain related problems to the student, and to
provide tutoring when the student has difficulty with the problem. A more sophisticated implementation of
this function would take into account a number of factors in the student model in order to more closely tailor
the problem selection and representation process to the individual student. Such elements as previous errors,
difficulties with specific concepts, and the recency with which the student has used the tutor could combine to
guide the optimum problem selection.

MONITORING THE STUDENT'S PERFORMANCE

This function requires that there be a common workspace for the ITS and student, and that the ITS is capable of
monitoring the student's performance in some meaningful context. At least five levels of student monitoring
are possible: keystroke, word, phrase, consequence, and complete student product.

There are obvious advantages and disadvantages for each of the above levels. Burns and Capps (1988) refer to
this as the "bandwidth question." At the level of individual keystrokes, the ITS may achieve the greatest
precision. The cost of lhis precision is registered in terms of development effort and potential for "abuse." In
terms of development effort, the cost is associated with developing models of the user and the system which can
be meaningfully examined at the level of individual keystrokes. In terms of "abuse," the keystroke level of
monitoring provides the greatest opportunity for intrusive intervention, what might be termed the "backseat
driver" effect. As the level of monitoring increases in granularity, the advantages and disadvantages shift
accordingly, until at the total product level, the ITS may be too imprecise to be effective, but Is virtually
incapable of intrusive Intervention.

ASSESSING STUDENTS GOAL

If the student's performance deviates from that of the expert module, or is in error for some other reason, the
ITS must assess the student's goal for the current transaclion. In the present context, this will be necessary to
evaluate the adequacy of the student's semantic knowledge of STOL. At a minimum, the ITS should be able to
infer the student's high-level goal based on the current problem.

A more accurate definition of the student's goal may be achieved by incorporating data on the student's mental
models of the current problem domain. The ITS may generate an hypothesis about how the student
conceptualizes the current problem, both as an individual entity and as part of the problem domain. This
hypothesis should describe both the student's problem conceptualizations as well as problem solving strategies.

The student model traditionally supports this function by providing two types of information. First, the
student model provides a general description of how the typical student conceives of and solves specific
problems in the problem domain. Second, the sludent model contains an historical record of the current
student, including aptitudes, the content and outcome of previous tutor sessions, typical errors, and
preferences for tutor session design and content. This information in used to infer the student's current goal
and to formulate prellminary hypotheses about the student's current level of knowledge.

587

Given a student goal, the ITS can determine if tutoring is required. Not every student error will require
tutoring. For example, an ITS may be capable of distinguishing between errors and what Carroll and
McKendree (1987) refer to as "characteristic nonoptimalities" (i.e., idiosyncratic problem solving strategies
which are effective but not optimal). For this capability, the ITS must be sensitive to individual problem
solving strategies which may range outside the normative model, but which are effective and consistent with
both the both student's objectives and his conceptualization of the problem. The concern here is not only with
regard to the student's perception of the acceptability of the ITS, but also in terms of maximizing the student's
natural propensity to learn. Woolf and Cunntngham (1987) recommend developing an ITS which can guide a
students without interruption as long as the student appears to be attaining a specific goal.

SELECTING THE INFORMATION TO BE TUTORED

At a minimum, the ITS selects information to be imparted to the student based on explicit errors which are
Indicative of a specific flaw in the student's knowledge. At a practical level, the ITS can infer knowledge gaps
by comparing the student's performance to that of the expert uslng a normative model which reflects changes
in student behavior as they acquire skills and knowledge. In general, this approach assumes that the knowledge
gaps of the student can be inferred once the student's position on a hypothetical skill acquisition continuum has
been defined. This approach is Implemented thro_ t_'le development Of a general mode/0f Student
performance which describes changes in the way the student solves problems at various stages of expertise.
Given such a model, we can elaborate on individual stages using system specific examples. A major limitation
of this approach is that it must assume that the knowledge level of the student is monolithic for a particular
stage of learning. This limitation may be at least partially overcome by including independent student models
for each relevant knowledge domain. This solution, however, raises significant implementation issues
regarding efficiency and economy.

Wenger (1987) proposes a different solution to this problem which involves development of a diagnostic
model of the student's current skills and subskills. This model is based on a representational scheme for
procedural skills with an emphasis on those skills that can be mislearned. The notion of evaluating individual
student actions, In terms of the implications of those actions for the skill/knowledge level of the student, may
be thought of as an assessment of the ignorance of the student. The term, ignorance, is used here in its clinical
sense without pejorative connotation. What is required, then, is a descriptive and computational model which
can be used to evaluate the type and amount of ignorance an individual possesses with regard to a particular
element of the knowledge domain. This shifts the focus of the ITS's assessment of the student from what the

student knows to what the student does not know. This assessment may more directly support the selection of
knowledge to be tutored than does the development of traditional student models. This requirements for
assessing ignorance are discussed in detail in Eike and Seamster (1989).

There are at least 4 distinct states of ignorance which must be considered:

1. Unknown/misknown class of elements - the student is not aware of the existence of an entire (:lass of
elements or has mistaken notions aboul the class. In this case, the ITS Will have to explain to the
student what are the characteristics which define membership in this class.

2. Unknown/misknown element - the student is not aware of the existence of the element or does not
believe that the element is a member of a particular class. The student has a valid schema for the class
of elements to which the current item belongs, but is unaware of the existence of this particular
instance of that class or has not assigned the element to the proper class.

3. Unknown/misknown relevance - the student is aware of the existence of the object but has failed to
observe the relevance of the object for the present problem. The basis for this ignorance may be more
profound, necessarily deriving from a failure to recognize the relationship between known atlribufes of
known objects.

4. Unknown/misknown rules or procedures - the student is aware of all of the relevant objects and classes
of objects, but lacks or misunderstands the rules necessary to solve the problem.

In order to instantiate this approach, lhe ITS needs the capability to detect an error and then infer the
underlying ignorance. In selecting the information to be imparted, the ITS may consider several information
parameters, including content, amount, level of detail, and format. As shown in Figure 1, the diagnostic
module interacts with the student model and the curriculum module In making this selection.

588

ADAP'rlNG TUTORING MODE TO,._T'UDENI_
J

A major distinction between conventional Computer Assisled Instruction (CAI) and an ITS is the ability to
dynamically adapt the tutoring strategy to the current needs of the student. In theory, one of the most powerful
features of an ITS is the ability to alter its mode of instruction to accommodate the unique requirements of the
individual student. In practice, however, this capability may be beyond the current state of the art. Carroll &
McKendree (1987) observe that current ITSs are not able to reason about lutoring or select strategies
dynamically.

Wenger (1987) describes a number of potential tutoring strategies, including the following:

Case method
Coaching
Engage and pull
Issues and examples
Model tracing
Modeling-scaffolding-fading
Planning nets
Steering testing
Socratic method

The current concern is in developing a partially adaptable ITS. In the case of a STOL ITS, the main issue it
whether the ITS should have more than one tutoring strategy, and how would several strategies be selected and
presented to the student. Norcio and Stanley (1988) discuss several negative aspects of adaptive interfaces
which have implications for ITS design. First, adaptation, by definition, involves a change in the way the ITS
interacts with the student. According to Norcio and Stanley, such changes may inhibit the user's ability to
develop a coherent model of the system. This has the potential effect of undermining the student's confidence in
his understanding of the system with a consequent degrading of the student's performance. Similarly, the
student may experience a sense of losing control over the system such as not being able to predict the system's
response. This also may contribute to a general feeling of confusion on the part of the studenl. From a
practical perspective, adaptation imposes significant development costs.

TUTORING THE STUDENT

Given that the ITS has identified and diagnosed the student's problem, and developed a general plan for remedial
action, the system is ready to begin advising or tutoring the student. This function contains those elements of
the ITS that involve the actual communication of information to the student. Irrespective of the tutoring
strategy employed by the ITS, the system should have the ability to explain the rules and information processes
which underlay its knowledge base. This feature is typically referred to as the "glass box model" (Burns and
Capps, 1988), and is similar to "explanation facility" used in expert syslems.

In order to be maximally useful to the student, the ITS should have the following capabilities relative Io
explaining the rules contained in its knowledge base:

1) At any point during a tutoring session, the ITS should be capable of displaying the rules which are
central to solving the current problem.

2) The ITS should be capable of recalling and displaying each invoked rule and associating it with a specific
event to explain the rationale for the ITS's assessment of the event.

3) The tutor module should be able to search the knowledge base to locate rules or items of knowledge in
response to specific inquiries from the student.

The ITS should provide the capability to model and predict the performance of an expert in solving a particular
problem. In this manner, the student could observe the expert's problem solving strategies in a context that is
relevant to the student. The lulor module would Ihen be able to "play back" the expert's solution, step by
step, with the student examining each step and querying the ITS for explanations and justifications.

As indicated in Figure 1, the tutoring function involves the tutor module, the student model, and the user
interface module.

589

UPDATINGTHESTUDENTMODEL

The final function of the ITS is to update the student model. The student model should be updated based on the
results of the activities which occurred during the session. Figure 1, depicts the evaluation function as being
driven by the output of the tutor module in conjunction with the data on the student's performance. This is a
somewhat simplified version of the update function. For a more complex version, information collected or
generated by most of the remaining modules throughout the session could be incorporated into the update. This
more complex form of updating could pose difficult data management problems.

CRITICAL ISSUES

During this phase of ITS design, there are a number of critical decision that are being made affecting the
direction and final capability of the STOL ITS. A major decision is to emphasize the user interface. A number
of the earlier ITSs initialed with the development of an expert module. This is due in part to the fact that some
of these ITSs evolved from expert systems and consequently had established expert modules. In the case of
STOL, there is not an existing expert system, and it was decided to Start offwith the development of whichever
module would provide the best data for evaluating the feasibility of the project.

ITS development has matured to the point that greater emphasis can now be placed on the end-user as well as
the ITS's impact on the training system. Given this new focus on the end-user, it was decided that the user
interface module would provide a good starting point. A user interface pr0totype could be Used to gather the
traditional interface preference and performance data, and could be used to e',,aluate the relative effectiveness
of alternative tutoring strategies in the context of specific student problems. _

In discussing the development process of existing ITSs, it was discovered that some of the current ITSs were
developed starting with the interface. Specifically, the Geometry Tutor (Anderson, Boyle, & Yost, 1985) was
developed with the interface being completed first. One of the reasons for this is that the user interface for the
Geometry Tutor Is relatively complex, and the representation of the geometry proofs was considered to be a
critical factor in the success of the Geometry Tutor. Analysis of this development approach revealed an
additional benefit from starting with the user Interface. If the user interface prototype were Sufficiently
flexible and robust, that prototype could be used to not only gather user data, but could be used as the primary
tool for knowledge acquisition. STOL experts would interact with several sample problems and the various
forms of representing STOL, and would provide a range of problem solutions as well as ways of optimizing STOL
representations.

This early emphasis on the user interface has influenced the emphasis that will be placed on the nine functions
of an ITS. Table I shows those relative emphases.

Table I. ITS Functions and Their Relative Emphasis

FUNCTION

Initiating the tutoring session

Assessing the student's status

Presenting the problem

Monitoring the student's performance

Assessing the student's goal

FOCUS LEVEL OF
OF THIS IMPLEMENTATION

PHASE simple Complex

Identify the information to be tutored • •
Adapting tutor mode to student • •

Tutoring the student • •

Updating the student model •

590

TheSTOLITSwillrepresentSTOLasacommandlanguageinitslineartextualform In the context of the STOL
interface as shown In Figure 2. In addition, the designers would like to develop at least one other form of STOL
representation that would facilitate the learning and tutoring process. This would be a key feature of the ITS
thai would distinguish it from a simulator, just capable of representing the operational environment. The
psychological motivation for this is that student's of programming languages can easily overload their working
memory with syntax rules. One way to reduce this cognitive workload, Is to provide the student with a
structured editor such as the one In the LISP Tutor (Anderson & Retser, 1985). With that editor, when the
student enters a LISP function, the tutor displays place holders for the required arguments. The editor also
automatically balances parentheses. This form of editor does reduce cognitive workload, but It fails to solve
another problem common among programming language students, their difficulty in translating their natural
language solutions into the narrow and restrictive environment of most programming languages. One solutions
to this problem, proposed by Bonar et at. (1988), is to provide the Student with some intermediate
representation of the programming language that will be less taxing to the student's working memory and at the
same time provides an easier transition from the normal way of structuring the problem.

Line

1
2
3
4
5
6
7
8
9

10
11
12
13

46
47
48

Prompt Line

Input Line

Manual Status Line

Proc Echo Line

Proc Status Line

Standard Header Line

NCC
Crit iq

User-defined area

Including N event
message lines

Event Line
=al Messaoe Line

put

rea

Figure 2. The STOL User Interface

In the case of Bonar et al. (1988), this intermediate representation took the form of a visual programming
language. More precisely, they used a set of icons to represent the programming plans required to solve a
limited set of Pascal programming problems. These icons were In the form of puzzle pieces emphasizing the
placement of these plans in relation to other plans. A similar approach may be helpful for STOL students, and a
several forms of visual programming languages and direct manipulation environments will be evaluated.

STOL was selected as the command language for this phase of the ITS implementation. STOL is used in a number
of Payload Operations Control Centers (POCCs) to control ground system elements. It allows for the control of
telemetry, command and display processing, and related support functions. There were a several key
considerations in selecting a specific POCC. First, the POCC had to have a number of active controllers using
STOL that would serve both as subject matter experts and as evaluators of the STOL ITS prototype. The POCC
had to have a number of STOL controlled tasks that were similar to the majority of other POCCs, and the
controllers had to be active and accessible during this phase of the ITS design.

591

TheGammaRay Observatory (GRO) POCC met the above criteria and was selected for this phase of the ITS
development. There are currently six to eight GRO operators, with that number increasing to 12 or 14 dudng
critical activities such as the launch. These operators will be available to provide both the preliminary STOL
data and the in-depth GRO task Information. Once the prototype Is developed, these operators will be able to
provide problem solutions as well as ways of optimizing STOL representations.

The goal of the STOL tutor is to provide the critical training to controllers who need to learn the language. For
the early stages of development, the STOL ITS will be limited to STOL as It Is used in the GRO POCC, and as it Is
applied to a limited range of payload control problems. This Is a similar approach as was taken In the
development of PROUST (Johnson, 1986), a tutor that analyzes Pascal programs for non-syntactic bugs.
During the development phase, PROUST was designed to analyze two programming problems. The developers
demonstrated PROUST's ablltty to diagnose hundreds of novice sclutlons to these two problems. They wanted to
establish PROUST's diagnostic robustness before expanding the number of problems that It oould diagnose.
During this phase of the ITS design, several GRO POCC problems will be Identified for the tutodng process.
These problems should be similar to problems solved through STOL at other POCCs. They should be problems
which are relatively difficult for novices to solve and that require a range of STOL skills. Finally, these
problems should be related to tasks that are critical to mission suo_,ella.

The ultimate goal of this project Is to develop el set of ITS modules with sufficient flexibility so they may be
used for the tutoring of other command languages used at NASA control centers.

ACKNOWLEDGEMENTS

Financial support for this endeavor has been provided by CODE 522.3 of Goddard Space Flight Center. We
would also gratefully acknowledge the help of Henry Murray, CODE 511.2 of Goddard Space Flight Center, in
coordinating Interviews with subject matter experts in the GRO POCC.

REFB:ENCES

Anderson, J. R. (1988). The expert module. In M. C. Polscn, & J. J. Richardson (Eds.), Foundations of
intelligent tutoring systems (pp. 21- 53). Hilisdale, NJ: Lawrence Erlbaum Associates Publishers.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The Geometry Tutor. Proceedings of the International Joint
Conference on Artificial Intelligence. Los Altos, CA: Morgan Kaufmann Publishers, Inc.

Anderson, J. R., & Relser, B. J. (1985). The LISP tutor. BYTE, 10:4, 159-t75.

Bonar, J., & Cunnlngham, R. (1988), BRIDGE: An intelligent tutor for thinking about programming. In J.
Self, (Ed.) Artificial intelligence and Human Learning (pp. 391-409). New York: Chapman & Hall Ltd.

Burns, H. L. and Capps, C. G. (t988) Foundations of Intelligent Tutodng Systems: An IntroducUon In
Foundations of Intelligent Tutoring Systems Poison, M. C., and Richardson, J., (eds) Hillsdale, NJ:
Lawrence Erlbaum Associates, Publishers. _

Carroll, J. i., & McKendree, ,J. (1§87). interface design issues for advice'giving expert systems.
Communications of the ACM, 30, 14-31.

Eike, D. & Seamster, T. I.i (i989). Application of ITS technology to NASA control centers. Final Technical
Report under Contract SEAS CAR-2911800.

Johnson, W. L (1986). Intention-based diagnosis of novice programming errors. Los Altos: Morgan
Kaufmann Publishers, Inc.

Norcio, A., Stanley, J. (1988). Adaptive Human Computer Interfaces. NRL Report 9148, Washington, D.C.:
Naval Research Laboratory.

Wenger, E. (1987). Artificial intelligence and Tutoring Systems. Morgan Kaufmann Publishers, Inc.

Woolf, B. (1968). 20 years In the trenches: What have we learned? Proceedings of the International
Conference on Intelligent Tutoring Systems.

592

